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Abstract. The frequency dependence of third-order
properties can in the normal dispersion region be
expanded in a Taylor series in the frequency arguments.
The dispersion coefficients thus obtained provide an
efficient way of expressing the dispersion of frequency-
dependent properties and are transferable between
different optical processes. We derive analytic expres-
sions for the dispersion coefficients of third-order
properties in coupled cluster quadratic response theory
and report an implementation for the three coupled
cluster models CCS, CC2, and CCSD. Calculations are
performed for the first hyperpolarizability of the NHj
molecule. The convergence of the dispersion expansion
with the order of the coefficients is examined and we find
good convergence up to about half the frequency at
which the first pole in the hyperpolarizability occurs.
Padé approximants improve the convergence dramati-
cally and extend the application range of the dispersion
expansion to frequencies close to the first pole. The
sensitivity of the dispersion coeflicients on the dynamic
correlation treatment and on the choice of the one-
electron basis set is investigated. The results demonstrate
that, contrary to presumptions in the literature, the
dispersion coefficients are sensitive to basis set effects
and correlation treatment similar to the static hyper-
polarizabilities.
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1 Introduction

Power series expansions of frequency-dependent hyper-
polarizabilities have in recent years become a widely
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used tool for comparison of experimental or ab initio
calculated hyperpolarizabilities for different optical
proccesses [1-5]. The most commonly used ansatz for
interpolation of dispersion curves and for the extrapo-
lation of measured frequency-dependent hyper-
polarizabilities to the static limit [1-7] are even power
series in the frequencies. Such expansions have also been
used to compare dispersion curves calculated with
different ab initio methods [8]. The usefulness of the
dispersion expansions is emphasized by the fact that a
single, process-independent [9] second-order coefficient
is obtained for the diagonal components of the hyper-
polarizability f3,,, and for the vector component parallel
to the molecular dipole moment f [10]:

By (1302, 3) = B(0) (1 + A(w] + @3 + w3) + O(w}))
()

A sum-over-states expression for the coefficient 4 for the
expansion of the diagonal components f,,, was derived
by Bishop and Kee [11], but an implementation has not
been reported. The usual approach in ab initio calcula-
tions of dispersion coefficients has been to extract the
coeflicients from a polynomial fit to pointwise calculated
frequency-dependent hyperpolarizabilities. Despite the
inefficiency and the numerical difficulties of such an
approach [6, 8], no ab initio implementation has yet been
reported for analytic dispersion coefficients for fre-
quency-dependent first hyperpolarizabilities.

Recently, we have reported the implementation of the
quadratic response functions for the coupled cluster
model hierarchy CCS, CC2, and CCSD [12]. The imple-
mentation is based on the calculation of frequency-
dependent properties as derivatives of a variational
quasienergy Lagrangian. The 2n 4 1 and 2n + 2 rules [13,
14] are employed to calculate first hyperpolarizabilities
without solving higher than first-order response equa-
tions. In the present publication we extend this work [12]
to the analytic calculation of dispersion coefficients for
quadratic response properties. We define the dispersion
coefficients by a Taylor expansion of the quadratic re-
sponse function in its frequency arguments. Hence, this
approach is applicable to all hyperpolarizability compo-
nents and the coeflicients are independent of specific



nonlinear optical processes. For the experimentally im-
portant vector components |, f8,, and fx we calculate,
from the coefficients of the Taylor expansion, coefficients
for more compact dispersion formulas similar to Eq. (1).

The generality of the power series expansion and the
open-ended formulation of the dispersion formulas fa-
cilitate an alternative approach to the calculation of
dispersion curves for hyperpolarizabilities complemen-
tary to the pointwise calculation of the frequency-
dependent property. In particular, if dispersion curves
are needed over a wide range of frequencies and for
different optical processes, the calculation of the dis-
persion coefficients can be a cost-efficient alternative to
repeated calculations for different optical processes and
different frequencies. The explicit calculation of disper-
sion coefficients also introduces a flexibility in the ac-
curacy with which the dispersion contribution is
determined by the order in the optical frequencies
through which the dispersion coefficients are calculated.

In the next section we derive a Taylor expansion of
the coupled cluster quadratic response function in its
frequency arguments. For the experimentally important
vector components fj, ff,, and fx we give explicit ex-
pressions for the 4 and higher-order coefficients in terms
of the coefficients of the Taylor series. In Sect. 3 we
apply the dispersion expansion to the calculation of first
hyperpolarizabilities for the ammonia molecule. We test
the convergence of the hyperpolarizabilities with respect
to the order of the dispersion coefficients and investigate
the sensitivity of the coefficients to basis sets and cor-
relation treatment. The last section contains some con-
cluding remarks.

2 Theory

In the derivation of response functions we consider the
case where a molecule or an atom described by the time-
independent Hamiltonian H® is perturbed by an
external one-electron perturbation V (¢, ¢):

I:I(t, €) = HO + V(t, €) (2)

It is assumed that the perturbation operator V(t, €) can
be expanded in a sum over Fourier components as

Vit e) =Y HYe(w)el 3)

where HY are hermitian time- and field-independent
one-electron operators and €;(w;) are the associated field
strengths for frequencies ;. The letter e without index is
in the following used as a shorthand notation for the set
{€;} of field strengths. The time-dependent ground-state
coupled cluster wavefunction for such a system is
conveniently parametrized in a form, where the oscillat-
ing phase factor caused by the so-called level-shift or
time-dependent quasi-energy # (¢, €) is explicitly isolated
[15, 16]:

|CC(t,€)) = exp (—i/”//(t’,e) dt’) exp(7(t,¢)) [HF)
(4)
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T(t,¢€) is the field- and time-dependent cluster operator
T(t,€) =3, tu(t, €)1, and [HF) is the SCF wavefunction
of the unperturbed molecule. By keeping the Hartree-
Fock reference fixed in the presence of the external
perturbation, a two-step approach, which would intro-
duce into the coupled cluster wavefunction an artificial
RPA pole structure, is circumvented.

The cluster amplitudes 7,(¢,¢) are expanded in the
Fourier components of the applied perturbations and in
orders of the perturbation strengths as:

o0
1 X
t#(tae) :t/(f)) +Z;ZZZ‘X” Xm(@/lv‘uv@/ﬁ)
n=1"""ji Jn

< [ e (@, )7 (5)

m=1

The quasi-energy %" and the time-dependent coupled
cluster equations are determined by projecting the time-
dependent Schrodinger equation

(H — i%)‘CC(t, €)=0 (6)

onto the Hartree-Fock reference (HF| and onto the bra
states (HF|t], exp(—T):

W (e, t) = (HF|H(e,t) exp(T)

HF) (7)
(HF |t exp(—T(1,€))H(z, €) exp(T(z, €)) |HF)

.d
—lzlﬂ(t,e) =0 (8)
The latter equation may be written in the shorthand
form

d
eyt e) — i Et”(t’ €)=0 9)

Frequency-dependent higher-order properties can be
obtained either by expansion of expectation values or as
derivatives of the quasi-energy with respect to the field
strengths of the external perturbations. For nonvaria-
tional ab initio methods which do not satisfy the Hell-
man-Feynman theorem, the latter route is preferable,
because it conserves the symmetry of the response
functions with respect to permutations of the operators
X; together with the accompanied frequencies w;. To
derive expressions for the derivatives of the coupled
cluster quasi-energy we use a variational formulation
which is obtained by combining the quasi-energy and the
time-dependent coupled cluster equations to a quasi-
energy Lagrangian:

_ d
L(t,e) =W (t tu(eu(te) —i—1t, 1
(1.0 = #(6:0)+ S ulentt. ) =i Gt (10)
The time-average of the quasi-energy Lagrangian
1 +lo
{L(t,€)}; = lim —/ L(t,¢e)dt (11)
ty—00 2ty

Z
may now be required to be stationary with respect to the

Fourier components of the cluster amplitudes and the
Lagrangian multipliers [12, 16-18]:
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S{L(t,e)}7 =0 (12)

Inserting the perturbation and Fourier expansion of
the cluster amplitudes (5) and an analogous expansion of
the Lagrangian multipliers into Eq. (12), this becomes a
variational condition for the individual expansion coef-
ficients. In zeroth-order one obtains the usual coupled
cluster equations, ¢(’) =0, and the equations for the
zeroth-order Lagrangian multipliers:

' 47194 =0 (13)
The vector ¥ and the Jacobian matrix A are defined as
partial derivatives of the quasi-energy and the Lagrang-
ian with respect to cluster amplitudes and Lagrangian
multipliers

o
O = [Z— 14
T (81‘, >0 (14)
AL
Ay = —— 15
# <8tu<9tv>0 (15)

The index 0 indicates that the derivative is taken for zero
perturbation strength. The equations for the first-order
amplitudes and multipliers are obtained as:

4 (A—ol)(0) =0 (16)

(" +Fe'(w)) + (o) (A + ©1) =0 (17)

with &, #4, and F defined as:
0’L

cd _

Q# - (86A8?u>0 (18>
0’L

4 _

’/’;L - (3€A51u>0 (19>
0L

b= (o) Y

The response functions are obtained as derivatives
of the real part of the time-averaged quasi-energy La-
grangian:

(XX, X)) 0, = < dei (1) - - den(n)

d"{LL(t,€) +1L(2, e)*}T>
(21)

As a consequence of the time-averaging of the quasi-
energy Lagrangian, the derivative in the last equation
gives only a nonvanishing result if the frequencies of the
external fields fulfill the matching condition ), w; = 0.
In third order, Eq. (21) gives the quadratic response
function:

({(4;B,C)) iy 000
= L C=PECL G (o)1 () ()
+ 17 (w.4)Bt® (wp)t (0¢)

+ 1R (wp)C () + fA(wA)ABtC(wc)} (22)

with wy = —(wp + w¢). The operator P15¢ symmetrizes
with respect to permutations of the perturbation indices
A, B, and C and the accompanied frequencies and C**
symmetrizes with respect to an inversion of the signs of
all frequencies and simultaneous complex conjugation.
The four matrices G, B, F¥, and A* are defined as:

i = (56)?53;8’»')0 2

If the operators A4, B, and C are components of the
dipole operator, the quadratic response function is equal
to minus the respective component of the first hyperpo-
larizability f,5c(w4; wp, oc). An implementation of
Eq. (22) for the coupled cluster model hierachy CCS,
CC2, and CCSD has been reported in [12].

For a finite molecular or atomic system in its elec-
tronic ground state, the response function is analytic in
its frequency arguments with the exceptions of the poles
that occur when a frequency or a sum of frequencies
becomes equal to an excitation energy. Hence, for fre-
quencies below the first pole, quadratic response func-
tions can be expanded in a power series in the frequency
arguments. Because the frequencies w,, wg, and w¢ are
related by the matching condition w, + wg + wc = 0,
first hyperpolarizabilities, or quadratic response prop-
erties in general, are functions of only two indepen-
dent frequency variables, which may be chosen as wg
and wc:

o0
Basc(—wp — wc; wp, wc) = Z wpoDagc(n,m)  (27)
n,m=0

To derive computational tractable expressions for the
dispersion coefficients D, pc(n,m) we need the power
series expansion of the first-order responses of the cluster
amplitudes and the Lagrangian multipliers in the
frequencies. In [19] we have introduced the coupled
cluster Cauchy vectors:

() = i . C¥ (n) (29)
n=0

The Cauchy vectors for n > 0 are obtained by solution
of a recursive set of linear equations, starting with the
zeroth-order Cauchy vector C¥(0) which is equal to the
static limit of the first-order cluster amplitude response:

c*(0) = (0) (30)
CXn)=A"'C*(n—1) (31)



The corresponding expansion for the first-order

Lagrange multipliers is found as:

] I (dF
CX(”) - ﬁ (dT((;:X)> wx=0 (32)
—(_ n+l;7XA—n—l

+Z

= o} C¥(n (34)

n=0

m+l FCX I’l— ))A—m—l (33)

As can be proven by induction, the C¥(n) vectors for
n > 0 can be calculated by the recurrence relations:

C*(0) = 7(0) (35)
C¥(n) = = [FC*(n) + C*(n — 1)]A™ (36)

The matrices G, B, F¥, and A* were defined in Eqs.
(23)—(26) as partial derivatives of the quasi-energy La-
grangian taken at zero field strengths, e = 0, and hence
are frequency independent. To find the power series
expansion of Eq. (22) in wp and w¢ we have thus to
replace the first-order cluster amplitudes and Lagrangian
multipliers by the expansions in Egs. (29) and (34) and
must express wy as —wg — wc. For the first step it is
convenient to introduce the intermediates

dAgc(j, k, l)
= PEC{LGC! ()CP (k) CE(1) + 4 CH(G)BC (k) CE (1)
+10FICEHRICE(D) + 0T ()APCE()} (37)

The operator P47¢ used in Eq. (37) symmetrizes with
respect to permutation of the operators 4, B, C together
with the accompanied “Cauchy” orders j, k, /; J is the
Kronecker symbol. Using the intermediates dypc(J, k, ),
the hyperpolarizability can be expanded around its static
limit as:

Bagc(w4; 0, o¢)

00
= —1C* ) wyohordise(,k, 1) (38)
JII=0
_ _% oo i i(_l)p+q (p + IJ> w;;;kwcéﬂ
pq=0 kI=0 P
X dagc(p +q,k, 1) (39)
n m + q
1 Ciw W )P+ (p )
n; p=0 ‘1;
XdABC(p+q7n_pvm_q) (40)

and the dispersion coefficients Dypc(n, m) are found as

ZZ p+q(P+61>

p=0 g=
x 3 (dasc(p+q,n—p,m—q) + (—1)"""
X dygc(pt+q,n—p,m—q)") (41)

DABC n, m
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From the last equation it follows that all coefficients
with even total order m + n are real

ZZ p+q(p+¢1>

p=0 g=
x Re(dspc(p+q,n—p,m—q)) (42)

while coeflicients with odd m + n are pure imaginary:

ZZ p+q<P+tI>

p=0 g=
x Im(dagc(p+4,n—p,m—q)) (43)

For electric hyperpolarizabilities, all three operators A,
B, and C are real and for these properties the odd
dispersion coefficients vanish.

As mentioned in the Introduction, the direct ab initio
calculation of the dispersion coefficients opens an alter-
native route to the calculation of dispersion curves for
frequency-dependent properties which is complementary
to the conventional approach of a pointwise calculation
of the frequency-dependent property for a certain
number of frequencies between which the dispersion
curve is interpolated using a polynomial or rational
function. For both approaches the computational most
demanding steps (in terms of CPU time) are the solution
of linear equations. The pointwise calculation of a gen-
eral frequency-dependent third-order property requires
at each frequency point the solution of four sets of linear
equations [N (wy), tY(~wy), (wyx), F(-wy)]. In
comparison, the calculation of the dispersion coefficients
requires for each additional even order 2k = n 4+ m the
solution of the four sets of linear equations for the
vectors CX(2k — 1), C¥(2k), C* (2k — 1), C¥(2k).

For optical processes which can be parametrized in
terms of a single laser frequency like the electro-optical
or dc Pockels effect (EOPE), second harmonic genera-
tion (SHG), and optical rectification (OR), specialized
versions of Eq. (27) can be derived. For the electro-
optical Pockels effect one obtains:

DABC n, m

DABC n, m

e () = Bapc(—w;0,0) = > ™ DEFF(n)  (44)
n=0
with
DYEE(n) = Dupc(n,0) (45)

and for the second harmonic generation the dispersion
formula is:

S (0) = Bpe(—20; 0, 0) Z o™ Dipl(n)  (46)
with
D33E(n) =Y Dapc(n—m,m) (47)

m=0

The hyperpolarizability describing the electro-optical
Pockels effect is related to the optical rectification hyper-

polarizability by fon,(w) = iott(w). Accordingly, the
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dispersion coefficients are
DEREE(n). |

For the vector component of the first hyperpolariza-
bility in the direction of the permanent dipole moment,

which is defined as

B = ;; {ﬁzgg + B + 5552} E=x,y,z (48)

related by DZR (n) =

with the z axis chosen parallel to the molecular dipole
moment, an alternative, more compact, expansion can
be used [20]:

ﬁ|| (wo; w1, 2)

oo n/3
—ﬂH (1 +ZZA2n 6m 6me276m I6j3n> (49>

n=1 m=|
with w?}, = 0} + w? —&—w% and ;=) + 0] + 03 =
3wowiw;y [20, 21]. Adopting a notation commonly used
for dispersion formulas for the isotropic second hyper-
polarizability y [4], Eq. (49) can up to sixth order in the

frequencies be wrltten as
/3||(600; w1, )
= B (0)(1 + Aw}, + By,
+ Cody + C'ody+ ) (50)

The coefficients 4, B, C, C' etc. are related to the
dispersion coefficients D(n,m) introduced in Egs. (27)
and (41). The necessary expressions are found by
equating the coefficients for the frequency products
ooy in Eq. (49) with the coefficients of the Taylor
expansion of f(wo; w1, ®z) in w; and w; as in Eq. (27).
Introducing, by analogy to the averaged hyperpolariza-
bility, the dVCI‘dng dispersion coefficients

Dy(n,m) Z {D:ce(n,m) + Deze(n,m) + Deez(n,m) }

{=x,pz (51)
the 4 and B coefficients, for example, can be calculated
as:

1
zﬁu( )
1
4/3\\( )

Expressions for the sixth- through tenth-order coeffi-
cients are given in the Appendix. Another important
hyperpolarizability component is [4]:

1
:gz{zﬁfo_Sﬁézf—i_zﬂiéz} f:xa)’,z (54)
¢

Dy(2,0) (52)

Dy(4,0) (53)

which is related to the measured quantity in electro-
optical Pockels and dc Kerr experiments fix as [4]:

Bx = %(ﬁu - /ﬂ) (55)

To obtain a similar dispersion formula for f,, this
hyperpolarizability component must be written as a sum

of two tensor components which are irreducible with
respect to the permutational symmetry of the operator
indices and frequency arguments [22]:

= {IBe — Bz + 1B} E=xyz (57)
¢

The index ms indicates that f§,, transforms according to
the mixed-symmetry representation of the symmetric
group S;. This irreducible tensor component vanishes in
the static limit and also if Kleinman symmetry [4, 23] is
assumed, which is a frequently used approximation in
the calculation of dynamic hyperpolarizabilities. The
value of f, is thus a measure for the deviation from
Kleinman symmetry. The hyperpolarizability measured
in Kerr effect experiments fg, Eq. (54), may be
expressed as the difference between ) and f:

Bx = By — Bms (58)

The irreducible tensor component 5, can be expanded
in powers of the optical frequencies as [20, 21]:

Prns (003 01, @2)

0o n/3
2n—6m 6m+3
= ﬁH ( § E A 2n—6m,6m+3WM1 W7y W3

n=0 m=0
o0 H/3
A 2n—6m , 6m 59
+ 2,2n— 6m6mCUM2(U @r3 (59)
n=0 m=

- — — 9202 — 2 — 2
with wy = 20; — wy — wy and wi, =20} — w3 — wi.

Using a similar notation as in Eq. (50) the dispersion
expansion for . can up to fourth order be written as:

+ BinstlcO?j —+ - ) (60)

The coefficients of the dispersion formula for f,, can
again be calculated from the dispersion coefficients
D(n,m) for the cartesian components of 5. Expressions
for the coefficients up to tenth order are given in the
Appendix.

For the dc Pockels effect [f(—w;w,0)] and for the
optical rectification process [$(0; —w, w)], where one of
the frequency arguments is zero, the effective frequency
w23 vanishes and the expansions in Eqs. (49) and (59)
reduce to:

. _ 2 2> 2
Buns (@05 01, @2) = sy + Bms @y 07,

B (—w;®,0) = B (0; w, —w)
= B,(0) (1 + i 22"A2r,_,0w2"> (61)
n=1
and
ﬁms(_w; w, 0) = ﬁms((); w, _w)

= B,(0) (0 + i 22"A2,2,,‘0w2"+2> (62)
n=0

Inserting Egs. (49) and (59) into Egs. (56) and (58)
we obtain dispersion formulas for the experimentally



important hyperpolarizability components f, and fy.
Up to fourth order they read:

B, (0) w?
B (wo; 01, 07) = HT (1 + <A + 2Amsw—1‘2’lz>wi2
2
>
+ <B+2Bmsw—"2”>w22
2

+ 2B, oy + - ) (63)

>
Pr(wo; w1, my) = ﬁ(O)(l + (A —Amsw—/‘z”z>wfz
12
>
+ (B—Bmsw—g]z>w22
12

ooyt ) (6

For the second hyperpolarizability the deviation of the
ratio y/y, from 3 is sometimes used as a measure for
the deviation from Kleinman symmetry [1]. Bishop [24]
showed that this ratio can be expanded up to second
order in frequency arguments as:

V“(w01 w1, W3, (U})
71 (wo; 01, 2, w3)
= 3(1 + r(w} + 6wows + 6wwr) + -+ ) (65)

where r is frequency independent. Using Egs. (50) and
(60) we can expand the analogous ratio for the first
hyperpolarizabilty up to second order as:

B 3B
ﬂl ﬁ“ + 2ﬁms

Using the approach outlined in Egs. (27)—(60) we have
implemented the calculation of dispersion coefficients for
quadratic response functions for the coupled cluster
model hierarchy CCS, CC2, and CCSD into the coupled
cluster response code described in [12, 18, 19, 25-31].

=3(1 — 2Amswip, + ) (66)

3 Dispersion coefficients for the first hyperpolarizability
of ammonia

To investigate the convergence of the dispersion expan-
sion and the sensitivity of the coefficients to basis set and
correlation treatment, we calculated the dispersion
coeflicients for ammonia, NHj, up to tenth order with
three different basis sets and the three coupled cluster
models CCS, CC2, and CCSD. The calculations were
carried out at the experimental geometry Ryg = 1.012 A
and /gnyg = 106.7° [32] and we used three basis sets
taken from the series of correlation consistent basis sets
developed by Dunning and coworkers [33-35], namely t-
aug-cc-pVDZ, aug-cc-pVTZ, and t-aug-cc-pVTZ. These
basis sets were selected to obtain basis set saturation to
different levels of accuracy. The t-aug-cc-pVDZ does not
contain f functions at the N atom and no 4 functions for
H, but many diffuse functions, while the aug-cc-pVTZ
basis contains these higher angular momentum functions
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but only a few diffuse functions. The t-aug-cc-pVTZ
basis set is expected to give results near the basis set limit
as it contains higher angular momentum functions and a
sufficient number of diffuse functions. The CCSD results
for the frequency-dependent first hyperpolarizabilities of
ammonia obtained in the t-aug-cc-pVTZ basis set are in
reasonable agreement with the experimental result from
Ward and Miller [36], who measured at the ruby laser
frequency the second harmonic generation hyperpolar-
izability of ammonia ﬁﬁHG(694.3 nm) = —48.4 + 1.2 au
[37]. The CCSD response result in the t-aug-cc-pVTZ
basis at the equilibrium geometry is for this frequency
—51.2 au. The zero-point vibrational correction was
calculated by Spirko et al. [38] at the MCSCF level and
was found to increase the absolute value of ,BSHG by
about 6%. The pure vibrational contribution was
estimated by Bishop et al. [39] as ~—0.18 au. Adding
these corrections to the CCSD response result for the
t-aug-cc-pVIZ basis we obtain ~-—54.5 au, which
compares reasonable well with the experimental result
if one takes into account that we have not included the
effects of connected triples.

First, we examine the convergence of truncated ex-
pansions with the order of the dispersion coefficients. In
Table 1 we have listed the coefficients for the parallel
hyperpolarizability component f for SHG and for the
EOPE, DﬁHG(n) (Eq. 47) and DﬁOPE(n) (Eq. 45), for
the aug-cc-pVTZ basis, and a CCSD wavefunction.
From these coefficients we calculated for three different
frequencies, which cover the usual experimental range of
0.04-0.1 au, the Taylor approximations of order 2
through 10 and the diagonal Padé approximants [40]
which are correct through the same order in the fre-
quency arguments. The results are compiled in Table 2
and displayed for selected orders in Fig. 1 together with
the hyperpolarizabilities obtained from response func-
tion calculations without expansion for the frequency
dependence. For the EOPE we find a fast convergence of
the dispersion expansion. Already the fourth-order
Taylor approximation gives results which up to w = 0.1
au are within 2% of the nonexpanded hyper-
polarizabilities. Using the [I, 1] Padé approximant,
which is constructed from the same dispersion coeffi-
cients and is also correct up to ¢(w*), decreases the error
by about an order of magnitude. With this accuracy, the
error in the dispersion expansion is already smaller than
the remaining basis set effects, vibrational effects, or the
contribution of connected triple excitations. Thus, the

Table 1. Coefficients for f(w) for second harmonic generation
(SHG) and electro-optical Pockels effect (EOPE) of ammonia at the
experimental geometry. A CCSD wavefunction and the aug-cc-
pVTZ basis were used. Results are given in atomic units; the
numbers in parentheses indicate powers of ten

Order SHG EOPE
0 ~2.79248(1) ~2.79248(1)
2 -2.37315(3) ~7.91105(2)
4 ~1.75122(5) ~1.94579(4)
6 ~1.23489(7) ~4.39681(5)
8 ~8.49697(8) -9.33439(6)
10 ~5.77775(10) ~1.89759(8)
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Table 2. Convergence of the

OR
Taylor series and the series of ~ Order/ (w) (au)
diagonal Padé approximants approximant
for ﬁSHG( ) and R (o) o = 0.0428286 au o = 0.0656249 au o =0.1 au
I ) (A = 1064 nm) (A =694.3 nm) (4 =455.6 nm)
(CCSD aug-cc-pVTZ basis).
The “inifinite” order results Taylor Padé Taylor Padé Taylor Padé
were calculated using the im-
plementation for the frequency-  2/[0, 1] —29.3755 —29.4549 —31.3316 —31.8050 —35.8354 —38.9619
dependent response function 4/[1, 1] —29.4409 —29.4440 —31.6925 —31.7353 —37.7812 —38.4159
6/[1, 2] —29.4436 —29.4437 —31.7276 —31.7311 —38.2208 —38.3376
8/[2, 2] —29.4437 —29.4437 —31.7308 —31.7311 —38.3142 —38.3374
10/[2, 3] —29.4437 —29.4437 —31.7311 —31.7311 —38.3332 —38.3375
00 —29.4437 —31.7311 —38.3378
B (@) (av)
2/[0, 1] —32.2767 —33.0801 —38.1451 —44.0450 —51.6564  —185.962
4/[1, 1] —32.8656 —32.9577 —41.3931 —42.9061 —69.1685  —118.478
6/[1, 2] —32.9417 —32.9528 —42.3795 —42.7983 —81.5174  —108.943
8/[2, 2] —32.9513 —32.9527 —42.6718 —42.7919 —90.0144  —107.446
10/[2, 3] —32.9525 —32.9527 —42.7574 —42.7924 —95.7922  —107.706
) —32.9527 —42.7926 —107.883
130
120 4 SHG, 6. order Taylor approx. — :
SHG, 10. order Taylor approx. ---
110 SHG, [2/1] Padé approximant ---- é
SHG, nonexpanded results ¢ K
100 EOPE, 2. order Taylor approx. —-—- K;”
EOPE, [1/1] Padé approximant ---
. 90 EOPE, nonexpanded results + ,.’J
=
® 80+
8
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Fig. 1. Convergence of [)"
the Taylor and Padé approximants (dlspers10n coefficients calcu-
lated with a CCSD wavefunction and the aug-cc-pVTZ basis)

inclusion of the sixth-order coefficient will in this case
hardly affect a comparison with experiment.

The convergence rate of the Taylor expansion and the
series of diagonal Padé approximants is determined by
the posmon of the first pole in the hyperpolarizability.
For BH R(w) this occurs when w equals the first dipole-
allowed transition energy. In the example we used here
(CCSD, aug-cc-pVTZ basis), this is the case for

S(w) and ﬂEOPE(w) with the order of

o = 0.243 au or 4 = 187 nm, which is much larger than
the frequenmes We cons1dered For the SHG hyperpo—
ldI‘IZdblllty [3 ) the situation is different, because in
ﬂH ) the hrst pole occurs already when w equals half
the exc1tat1on energy of the transition. Thus the first pole
for ﬂ S(w) occurs already at « = 0.122 au, i.e. slightly
above the largest frequency considered in Table 2.
Consequently, the convergence of the SHG hyperpo-
larizability is not so favorable as for 57 (w). However,
a sixth-order Taylor approximation is still for frequen-
cies up to that of the ruby laser (41 = 694.5 nm) within
1% of the nonexpanded hyperpolarizabilities. Again, the
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Table 3. Comparison of the dispersion coeflicients for f; and f, for different basis sets and coupled cluster models

CCS CcC2 CCSD
taD aT taT taD aT taT taD aT taT
By (0)* -1.973(1)  -1.905(1)  -2.107(1)  —-4.680(1)  —3.853(1)  —4.666(1)  -3.306(1)  —-2.792(1)  —3.302(1)
A 1.097(1) 9.693(0) 1.042(1) 1.724(1) 1.503(1) 1.564(1) 1.640(1) 1.416(1) 1.477(1)
B 1.072(2) 9.324(1) 9.904(1) 2.331(2) 1.940(2) 1.979(2) 2.111(2) 1.742(2) 1.774(2)
C 9.503(2) 8.447(2) 8.669(2) 2.846(3) 2.313(3) 2.290(3) 2.435(3) 1.968(3) 1.938(3)
c 2.429(2) 2.079(2) 2.212(2) 7.206(2) 5.672(2) 5.733(2) 6.124(2) 4.750(2) 4.817(2)
D 7.893(3) 7.192(3) 7.156(3) 3.286(4) 2.602(4) 2.514(4) 2.644(4) 2.089(4) 2.000(4)
D 6.210(3) 5.274(3) 5.601(3) 2.627(4) 1.970(4) 1.989(4) 2.097(4) 1.552(4) 1.568(4)
E 6.286(4) 5.838(4) 5.675(4) 3.664(5) 2.811(5) 2.669(5) 2.766(5) 2.124(5) 1.991(5)
E 1.011(5) 8.609(4) 9.064(4) 6.054(5) 4.353(5) 4.366(5) 4.534(3) 3.223(5) 3.228(5)
Ams -0.810(0)  -0.380(0)  —0.570(0)  -2.494(0)  -2.080(0)  —1.895(0)  -2.147(0)  -1.579(0)  —1.580(0)
Buns -2.494(1)  -2.535(1)  -2.205(1)  -5.377(1)  -5.291(1)  —4.335(1) -4.758(1)  -4.545(1)  -3.836(1)
Bl -3.159(0)  —2.495(0)  -3.028(0)  -1.072(1)  —-0.906(1)  —-0.902(1)  -8.758(0)  -7.274(1)  -7.301(1)
Cins -3.155(2)  -3.479(2)  -2.868(2)  -7.753(2)  -7.758(2)  —6.180(2)  —6.671(2)  —6.603(2)  —5.349(2)
Cris -1.018(2)  -8.846(1)  -9.453(2)  -3.546(2)  -2.951(2)  -2.831(2) -2.866(2)  -2.364(2)  —-2.279(2)
Dhns -3.017(3)  -3.370(3)  -2.756(3)  -9.424(3) = -9.143(3)  -7.271(4)  -7.7253)  -7.465(3)  —6.008(3)
D -1.7333)  -1.597(3)  -1.591(3)  -7.237(3)  -5.986(3)  —5.526(3)  —5.655(3)  -4.659(3)  -4.314(3)
Dy -4.483(2)  —4.792(2)  -4.008(2)  -1.887(3)  -1.730(3)  —-1.419(3)  -1.4353) -1.304(3)  -1.079(3)
Ens -2.524(4)  -2.799(4)  -2.303(4)  -1.046(5)  —-0.967(5)  —0.775(5)  -8.094(4)  -7.481(4)  —6.052(4)
E -2213(4)  -2.115(4)  -2.0184)  -1.180(5)  —0.962(5)  —0.863(5)  —8.805(4)  —7.165(4)  —6.445(5)
E] -1.402(4)  -1.496(4) -1.2754)  -7.485(4)  —6.578(4)  —5.430(4) -5.4644) -4.779(4)  -3.971(4)
El -1.640(3)  -1.528(3)  -1.5133)  -1.067(4)  -0.858(4)  —0.773(4)  -7.5293)  —6.001(3)  —5.436(3)
#the SCF results in the three basis sets are: t-aug-cc-pVDZ, 14.35 [5s3p2d/3s2pld] + (1slp) basis: 32.5, 30.0, and 34.5 au [45];

au; aug-cc-pVTZ, 13.69 au; t-aug-cc-pVTZ, 15.50 au; other corre-
lated ab initio results for f;(0) are: MP2, CCSD, and CCSD(T) in a
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Fig. 2. The parallel vector component ff(—w; — wa; w2, w3) of the
first hyperpolarizability of ammonia as a function of the frequen-
cies w; and w», calculated from the dispersion coefficients through

tenth order for a CCSD wavefunction and the aug-cc-pVTZ basis
set (experimental equilibrium geometry)

use of Padé approximants improves the convergence
dramatically. With the [1,2] approximant, calculated
from the coefficients up to D}"'%(6), one obtains for fre-

quencies up to 0.1 au results within 1% of the nonex-

MCSCF in a [8s5p3d1f/4s2pld] basis: 27.77 au [38]; MCSCF in a
d-aug-cc-pVDZ basis: 28.24 au [8]

0.1
0.05
w9 in a.u.
0.1
panded hyperpolarizabilities. Such an accuracy
is sufficient for many applications. Usually, the

uncertainity of experimental measurements of f are
significantly larger than this uncertainity, often of the
order of 10% , and also for ab initio calculations a 1%
accuracy for hyperpolarizabilities is a challenging task
not met for polyatomic systems, in particular close to a
pole.

In the literature it has been speculated that the 4 and
higher-order hyperpolarizability dispersion coefficients
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Fig. 3. The perpendicular vector component f, (—w; — w2; w2, ®3)
of the first hyperpolarizability of ammonia as a function of the
frequencies w; and w,, calculated from the dispersion coefficients
through tenth order for a CCSD wavefunction and the aug-cc-
pVTZ basis set (experimental equilibrium geometry)

are less dependent on the choice of basis set and ab initio
method than static hyperpolarizabilities [2-4]. In par-
ticular, it was expected that the dispersion coefficients
are less sensitive to the correlation treatment than the
static hyperpolarizabilities. This expectation was based
on the observation that the MP2 pseudo-energy deriv-
ative method developed by Rice and Handy [41] gave for
some molecules similar 4 coefficients as were obtained in
time-dependent Hatree-Fock (TDHF) calculations with
the same basis sets [3, 4]. For theoretical reasons the 4
coefficient and higher-order coefficients should be sen-
sitive to the lowest dipole-allowed excitation energy
which determines the position of the first pole in the
dispersion curve. Since in the MP2 pseudo-energy de-
rivative method the positions of the poles are not cor-
related and thus are the same as in TDHF, it is not
unexpected that both methods give similar 4 coefficients.
In Table 3 we compiled the dispersion coefficients for f;
and f,,, for the three basis sets t-aug-cc-pVDZ, aug-cc-
pVTZ, and t-aug-cc-pVTZ and the three coupled cluster
models CCS, CC2, and CCSD. For ammonia, the dis-
persion coefficients for the Kleinman-forbidden mixed-
symmetry vector component f,,, are about an order of
magnitude smaller than the coefficient of the same order
in the frequencies for B)- As a consequence, the differ-
ence between f and fg is relatively small, as seen in
Figs. 2 and 4. The perpendicular hyperpolarizability
component f§, is shown in Fig. 3. If we compare the
results obtained for the static hyperpolarizability ﬁH(O)
with CCS, CC2, and CCSD, we find that these methods
behave similar to what we have observed in previous
coupled cluster response calculations of polarizabilities
and hyperpolarizabilities [12, 19, 42]: CCS gives results
of similar quality as SCF and the CCSD results are

0.1

waq 1N a.u.

-0.1

usually close to the experimental results, while CC2
often overestimates the static hyperpolarizabilities by a
similar amount as they are underestimated by CCS and
HF. In many cases, CC2 is not an improvement relative
to the uncorrelated methods CCS and SCF. This is in
contrast to the good performance of CC2 for excitation
energies, where usually the results improve systemtically
in each step of the hierarchy CCS—CC2-CCSD [27, 43].
If we compare the dispersion coefficients for the three
coupled cluster models listed in Table 3, we find a large
increase of the dispersion coefficients from CCS to
CCSD by a factor of 1.4-4.8. The inclusion of dynamic
electron correlation increases significantly the dispersion
of the hyperpolarizability. For all coefficients the CC2
results are about a factor 3 closer to the CCSD results
than the CCS values. In particular, for the two leading
coefficients for f, 4 and B, the CC2 results differ only by
6% and 11% from the CCSD values.

If we compare the results for the three basis sets
t-aug-cc-pVDZ, aug-cc-pVTZ, and t-aug-cc-pVTZ, we
find large but quite different basis set effects for the static
hyperpolarizabilties and for the dispersion coefficients.
The static hyperpolarizabilties are very sensitive to the
inclusion of diffuse functions, as also observed in many
previous studies. The results for f§j in the t-aug-cc-pVDZ
and t-aug-cc-pVTZ basis sets are thus similar and by
about 10-15% larger than the aug-cc-pVTZ basis re-
sults. In contrast, the dispersion coefficients show large
changes from the t-aug-cc-pVDZ basis to the triple zeta
basis sets aug-cc-pVTZ and t-aug-cc-pVTZ, in particular
for the correlated models CC2 and CCSD, but only
small changes with an increasing number of diffuse
functions.

4 Conclusions

We have derived and implemented analytic dispersion
coefficients for the quadratic response function of the
coupled cluster models CCS, CC2, and CCSD. The
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Fig. 4. The Kerr component Sy (—w; — wy; ), w3) of the first
hyperpolarizability of ammonia as a function of the frequencies w;
and w;, calculated from the dispersion coefficients through tenth
order for a CCSD wavefunction and the aug-cc-pVTZ basis set
(experimental equilibrium geometry)

dispersion coefficients are defined through a power
series expansion of the quadratic response function in
its frequency arguments and are thus applicable to
general frequency-dependent third-order properties and
independent of the nonlinear optical process. For the
irreducible tensor components the dispersion can be
expressed in compact dispersion formulas using per-
mutation symmetry-adapted linear combinations of the
optical frequencies. In an application to the first
hyperpolarizability of ammonia, we find fast conver-
gence of the Taylor expansion up to frequencies of
half the first pole. With Padé approximants the
convergence of the dispersion expansion can be im-
proved significantly and its application range is extend-
ed to frequencies near to the first pole. For many
molecules, in particular such with high-lying first
transition frequencies, the first two or three dispersion
coefficients will be sufficient to obtain the dispersion
curves within a 1% accuracy in the usual experimental
frequency range. A comparison of the dispersion
coefficients obtained with three different basis sets and
the three coupled cluster models CCS, CC2, and CCSD
shows that the dispersion coefficients are similarly
sensitive to the choice of the basis set and the
correlation treatment as the static hyperpolarizability,
although the effects are different. While the static
hyperpolarizability is very sensitive to the saturation of
the basis set with diffuse functions, the dispersion
coefficients are only affected a little by the number of
diffuse functions. However, relatively large changes are
found with respect to the zeta level of the valence basis.
We also find that for the static hyperpolarizability and
for the dispersion coefficients the performance of the
coupled cluster model hierarchy CCS-CC2-CCSD is
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quite different: while the static CC2 hyperpolarizability
is not improved compared to the CCS result, the CC2
dispersion coefficients are closer to the CCSD results by
about a factor of three compared to the corresponding
CCS values. The basis set effects on the dispersion
coefficients and the performance of the coupled cluster
hierarchy are consistent with the expectation that the
dispersion coefficients are sensitive to the accuracy with
which the lowest dipole-allowed excitations are de-
scribed.
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Appendix A. Formulas for the sixth- through
tenth-order dispersion coefficients for | and B,

The coefficients for the sixth- through tenth-order terms
of the dispersion expansion of Eq. (49) for  are found
as:

C =439 =%D”(6,0) (A1)
C' = Aoy = m (Dy(4,2) — 6D;(6,0)) (A2)
D=Ay4p = WD(& 0) (A3)
D=4, = m (Dy(6,2) — 10Dy (8,0)) (A4)

= sy = 32ﬁll(0)D|(10, 0) (AS)
B =2 =555 (Dy(8,2) — 15D,(10,0)) (A6)



240

The dispersion coefficients for f8 are obtained as:

Ay =A200 = ﬁto)Dms(z, 0) (A7)
Bus = A210 = 2’%(0)1)1]15(4, 0) (A8)
Bl = Ao = —% (Dus(3,1) + Dus(4,0))  (A9)
Cims = A220 = mDm(é, 0) (A10)
Clo=Ai11 = —WDM(S, 1) (A11)
Dis = 4230 = 8ﬁ“1(0)Dm5(8’ 0) (A12)
Dl =Ai21 = —#(O)(Dms(ll) — Dins(8,0))  (A13)
DIl =400 = 9@,1(0) (Dims(6,2) — 3Dms(7,1)

+ 5Dis(8,0)) (A14)
Ems = 4240 = 12 ﬁl © Dins(10,0) (A15)
E =43 = —% (Dins(9,1) = 2Dns(10,0))

(A16)

El =41, = % (Dins(8,2) — 4D (9, 1)

+ 8Ds(10,0)) (A17)
B = dygs = _W( ms(7,3) — Dins(8,2)

— 5Dis(9, 1) + 22Dps(10,0))

(A18)
with the intermediates Dy(n,m) defined as:
Dns(n,m)
= Z{ D.ze(n,m) — Deze(n, m) +%D¢5z(n,m)}
E=ux,y,z (A19)
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